Visualization of Eu²⁺/Eu³⁺ coactivated BaAl₂O₄ phosphor using X-ray nanoprobe beamline at TPS 23A

Yu-Hao Wu^{1,2}, Tu-Ngoc Lam^{1,3}, Chien-Yu Lee², Bo-Yi Chen², Gung-Chian Yin², Mau-Tsu Tang², E-Wen Huang^{1*} and Bi-Hsuan Lin^{2*}

¹ Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

² National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

³ Department of Physics, College of Education, Can Tho University, Can Tho 900000, Viet Nam

<u>bihsuan@nsrrc.org.tw</u>

<u>ewhuang@g2.nctu.edu.tw</u>

Abstract

Rare-earth ions play the most important roles as activators in phosphor materials. The valence states of the rare-earth ions significantly affect the emission properties of the phosphors. The emissions of Eu²⁺ and Eu³⁺ ions in the same host lattice are tunable and may produce different chromaticity coordinates in white light. X-ray excited optical luminescence (XEOL) spectrum enable to clarify the transition mechanism of rare-earth elements. In the present study, we explored X-ray fluorescence (XRF) mapping to visualize the valence states of rare-earth ions using X-ray nanoprobe techniques. The results demonstrate that the main contribution to the luminescence intensity of BaAl₂O₄:Eu²⁺ comes from the Eu²⁺ activator and the concentration of Eu²⁺ or Eu³⁺ ions have a negligible impact on the emission intensity.

Keywords - Rare-earth ions, phosphor materials, X-ray nanoprobe, X-ray excited optical luminescence, X-ray fluorescence