Demonstration of BEOL-Compatible Ferroelectric 6.5 nm HZO Capacitor with High Endurance and Retention

Li-Cheng Teng¹, Yu-Che Huang², Shu-Jui Chang³, Shin-Yuan Wang¹, Yu-Hsien Lin⁴ and Chao-Hsin Chien¹*

¹Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

²International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

³Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan.

⁴Department of Electronics Engineering, National United University, Taiwan.

chchien@nycu.edu.tw

Abstract

In this study, we have successfully fabricated a metal-ferroelectricity-metal (MFM) capacitor with an ultrathin 6.5 nm HZO using Molybdenum (Mo) as electrodes. We purpose a novel atomic layer deposition (ALD) scheme to overcome the challenge of oxidation of the bottom Mo electrode. The fabricated sample annealed at 400 °C demonstrated a 2Pr value of 54.3 μ C/cm² at an operating voltage of 2V, which meets the stringent requirements of Back-End-of-Line (BEOL) integration. Furthermore, in endurance testing, the sample maintained a 2Pr value of 52.2 μ C/cm² even after 10^{10} cycles (Δ 2Pr/2Pr_{pristine} \approx 4% from pristine to 10^{10} cycles).

Keywords - Ferroelectric capacitor, Hafnium Zirconium oxide (HZO), Back-End-Of-Line (BEOL), Endurance