Interface-doping Effects and Gate-length Dependence of TMD/Metal Contacts

Zi-che Yang (楊子澈)¹, Yi-chieh Chen (陳亦傑)², and Chiung-yuan Lin (林炯源)^{1*}

¹ Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan zcyang422.ee11@nycu.edu.tw

Abstract

During the fabrication of 2D-material based MOSFETs, the metal electrodes undergo annealing, leading to a minor transition metal doping within the electrodes and resulting in interface doping. To simulate this scenario, we constructed two model structures: one with doping concentrated at the TMD/metal interface and the other with doping uniformly distributed throughout the metal electrode. Density Functional Theory (DFT) calculations on these models revealed that, unlike conventional silicon-based transistors, they are sensitive to gate length. Precise control of gate length to the sub-nanometer scale during fabrication can significantly impact their electrical properties.

Keywords - interface doping, gate length, DFT