Long range van der Waal epitaxy of Au / MoS₂ moiré superlattices at room temperature

Yu-Che Huang¹, Liang-Ching He¹, Chiu, Shang-Jui², Yi-Wei Tsai², Kuan-Bo Lin¹, Shu-Jui Chang³, Edward Yi Chang^{1*}, Chenming Hu¹

¹International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

> ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan ³CREDM, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan edc@nycu.edu.tw and hu.chenming@gmail.com

Abstract

The performance of two-dimensional electronic devices is significantly influenced by the morphology and structural stability of metal/2D semiconductor interfaces. Nevertheless, the structural evolution of these interfaces, particularly at atomic resolution, has not been comprehensively studied. In this work, high-quality Au thin film crystals were epitaxially grown on MoS₂/Sapphire substrates using an E-gun in a high-vacuum environment and at room temperature. The orderly arrangement of atomic structures of Au/MoS₂ and moiré patterns can be observed in HRTEM images. Using the Au/MoS₂ moiré patterns observed in TEM, an atomic model of the interface was constructed with a 11 x 12 unit cell mesh of Au on MoS2. This structure exhibits a lattice mismatch of 0.63%. The in-plane structural properties were examined using synchrotronbased grazing incidence wide-angle X-ray scattering (GIWAXS), and the Au (111) out-of-plane surface was measured by synchrotron-based high-resolution XRD with an accuracy of onethousandth of a degree. The epitaxial relationship between Au and MoS₂ was observed through phi scans. Finally, theta-chi scans show that the crystal axis of Au near the MoS₂ surface is tilted by 0.6 degrees during epitaxial growth on MoS₂. This phenomenon reveals that the epitaxial growth of 3D materials on monolayer TMDs can tolerate lattice mismatches through long-range van der Waals epitaxy.

Keywords - Electron-beam evaporation, Long range van der Waal epitaxy, Metal-semiconductor contact