Optimizing WSe₂ Double Gate FETs with Low-Temperature PE-AlN/TH-HfO₂ Gate Dielectrics and Post-Annealing Treatment

Jia-Hao Chih(池家豪)¹, Yu-Che Huang(黃御哲)², Po-Heng Pao(鮑柏亨), and Chao-Hsin Chien (簡昭欣)¹*

¹Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan fun221110@gmail.com

Abstract

In this study, we demonstrate the successful integration of a low-temperature (100 °C) plasma-enhanced atomic layer deposition (PE-ALD) of AlN and TH-HfO₂ as gate dielectrics on WSe₂-based field-effect transistors (FETs). Initially, the device characteristics exhibited a transition from p-type to n-type behavior. To enhance the device performance without causing any damage, a post-deposition annealing process was carried out at 200 °C within a glove box environment. The annealing process effectively improved the device characteristics, confirming that the chosen temperature did not adversely affect the device. Subsequent double gate measurements were conducted, revealing that the low-temperature deposited AlN+HfO₂ dielectric stack maintained an equivalent oxide thickness (EOT) as low as 1 nm while preserving the functional integrity of the WSe₂ double gate device.

Keywords - WSe₂, PE-ALD, AlN