Achieving Low Contact Resistance in MoS₂ nFET with van der Waals epi-Au

Kris K. H. Lin¹ (林克憲), Shin-Yuan Wang² (王信淵), Shu-Jui Chang³ (張書睿), Chao-Hsin Chien² (簡昭欣), and Chenming Hu (胡正明)¹*

¹ International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
²Department of Electronics Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
³ Corporate Research, Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu 30078, Taiwan
*hu.chenming@gmail.com

Abstract

In recent years, contact metals for MoS_2 nFETs with prominent performance have predominantly been semimetals. However, semimetals with low melting points (m.p.) encounter electrical property degradation under thermal stress. Here, we proposed gold (Au) with higher m.p. as the contact metal for MoS_2 nFETs. Utilizing gold-assisted transfer and potassium iodide (KI) solution etching, we demonstrated single-crystalline Au patterns on MoS_2 , which indicates the preserved epitaxy of Au after the consecutive processes. Moreover, low contact resistance (R_C) of $358~\Omega$ ·µm between epi-Au and MoS_2 was extracted by the transfer length method (TLM), showing the potential of Au contact for robust MoS_2 nFETs.

Keywords - MoS₂, epitaxy, gold, nFET, contact resistance.