## Breaking the trade-off between mobility and on-off ratio in oxide thinfilm transistors

Yu-Cheng Chang(張祐誠)<sup>1</sup>, Chien-Wei Chen(陳建維)<sup>2</sup>, Der-Hsien Lien(連德軒)<sup>1\*</sup>

<sup>1</sup> Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

<sup>2</sup> Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan

barry2325899.ee11@nycu.edu.tw

## **Abstract**

Indium oxide stands out as a highly promising material for Back-end-of-line processes due to its combination of high mobility, low contact resistance, and compatibility with ALD at low temperatures. However, the challenge lies in managing the degenerate high carrier concentration, which results in a trade-off between mobility and on-off ratio, restricted its applicability in future electronic devices. While scaling the channel thickness can result in a reduction of the carrier concentration, this approach also leads to a degradation in mobility. In this study, fluorine-based plasma was utilized to overcome this trade-off. CF<sub>4</sub> plasma treatment was applied to nanometerthick In<sub>2</sub>O<sub>3</sub> transistors, resulting in a positive shift of the threshold voltage as treatment time increased, achieving a substantial positive V<sub>T</sub> tuning window of up to 70 V. It is worth noting that the mobility of In<sub>2</sub>O<sub>3</sub> increases as its thickness increases from 2 nm to 10 nm. However, if the thickness exceeds 3 nm, the transistor loses its on/off properties. After CF<sub>4</sub> plasma treatment, In<sub>2</sub>O<sub>3</sub> of all thicknesses exhibits an excellent on/off ratio. Notably, the 10 nm In<sub>2</sub>O<sub>3</sub> transistor maintains its higher mobility, indicating that the trade-off between mobility and the on/off ratio is successfully overcome. The XPS analysis indicates that the positive shift of  $V_T$  is due to the passivation of oxygen vacancies by fluorine atom and the capture of electrons by absorbed fluorine atoms, which possess a higher electronegativity than oxygen. Owing to the precise tunability of threshold voltage  $(V_{\rm T})$ , we successfully realized the depletion-load NMOS inverter. This result indicates that fluorinebased plasma treatment and ALD-based ultrathin In<sub>2</sub>O<sub>3</sub> have significant potential for the future BEOL electronic applications.

Keywords -  $In_2O_3$ , atomically-thin semiconductors, threshold voltage tuning,  $CF_4$  plasma treatment, mobility on/off ratio trade-off